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CHAPTER 7

Climatic Influences on Soil Organic
Carbon Storage with No Tillage

A, J. Franzluebbers and J. L. Steiner
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ABSTRACT

No-tillage crop production has become an accepted practice throughout the U.S. The Kyoto
Protocol on climate change has prompted great interest in conservation tillage as a management
strategy to help sequester CO, from the atmosphere into soil organic matter. Numerous reports
published in recent years indicate a large variation in the amount of potential soil organic carbon
(SOC) storage with no tillage (NT) compared with conventional tillage (CT). Environmental
controls (i.e., macroclimatic variables of temperature and precipitation) may limit the potential
of NT to store SOC. We synthesized available data on SOC storage with NT compared with CT
from published reports representing 111 comparisons from 39 locations in 19 states and provinces
across the U.S. and Canada. These sites provided a climatic continuum of mean annual temperature
and precipitation, which was used to identify potential SOC storage limitations with NT. Soil
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72 AGRICULTURE PRACTICES AND POLICIES FOR CARBON SEQUESTRATION IN SOIL

organic C storage potential under NT was greatest (~0.050 kg - m™ - yr™') in subhumid regions
of North America with mean annual precipitation-to-potential evapotranspiration ratios of 1.1 to
1.4 mm - mm'. Although NT is important for water conservation, aggregation, and protection of
the soil surface from wind and water erosion in all climates, potential SOC storage with NT compared
with CT was lowest in cold and dry climates, perhaps due to prevailing cropping systems that relied
on low-intensity cropping, which limited C fixation. Published data indicate that increasing cropping
intensity to utilize a greater fraction of available water in cold and dry climates can increase potential
SOC storage with NT. These analyses indicate greatest potential SOC storage with NT would be
most likely in the relatively mild climatic regions rather than extreme environments.

INTRODUCTION

Conservation-tillage crop production has become an accepted practice throughout the U.S. and
Canada. Thirty-seven percent of the cropland in the U.S. is now managed with some form of
conservation tillage (i.e., no tillage, ridge tillage, and mulch tillage) (CTIC, 1998). The Kyoto
Protocol on climate change has prompted the agricultural sector to promote more seriously various
forms of conservation tillage as practices to help sequester CO, from the atmosphere into soil
organic matter.

Numerous reports have been published in recent years concerning the effect of no-tillage crop
production (NT) compared with conventional tillage (CT) on potential soil organic carbon (SOC)
storage. However, these reports indicate a large variation in the amount of potential SOC storage
with NT. For example, SOC in the Ap horizon (0 to 20-cm depth) of a Dark Brown Chernozemic
clay loam in Alberta increased at only 0.17 to 0.20 mg - g™ soil - yr' compared with shallow CT
in two studies conducted 9 and 19 years under NT (Dormaar and Lindwall, 1989). In contrast,
SOC at a depth of 0 to 7.5 cm during 4 years under NT compared with plowed CT increased at
0.69 mg - g soil - yr' on a Waukegon silt loam in Minnesota (Hansmeyer et al., 1997) and at
~1.15 mg - g' soil - yr' on a Kamouraska clay in Quebec (Angers et al., 1993). Incorporation of
residues below 7.5 cm with plowing would likely reduce this effect when considering the entire
plow depth.

Soil organic C accumulation rates between these extremes have also been observed. At a depth
of 0 to 5 cm, SOC increased at 0.42 mg - g-' soil - yr' during 14 years under NT compared with
multiple-disk CT on a Norfolk loamy sand in the South Carolina coastal plain (Hunt et al., 1996)
and at 0.28 to 0.42 mg - g' soil - yr-! during more than 20 years under NT compared with plowed
CT on a Bertie silt loam in the Maryland coastal plain (McCarty and Meisinger, 1997). On a
Hoytville silty clay loam in Ohio, SOC of the 0- to 10-cm depth increased at 0.66 mg - g' soil - yr!
- during 12 years under NT compared with plowed CT (Lal et al,, 1990). The large range of changes
in SOC with NT compared with CT among the aforementioned studies may be related to differences
in cropping system, fertilization, depth of tillage tool, numerous soil characteristics, climatic
conditions, and depth of sampling.

When comparing management effects on SOC storage, soil sampling depth is an important
consideration. Depth distribution of SOC is altered with NT compared with CT. For example, SOC
under NT was 40 + 22% greater than under CT at a depth of 0 to 7.5 cm, similar at a depth of 7.5
to 15 cm, and 7 = 11% less at a depth of 15 to 30 cm, resulting in a net change of only 9 £ 7%
greater SOC under NT (Doran, 1987). Changes in depth distribution of SOC with tillage systems
suggest the need to standardize sampling protocols to collect soil to at least the depth of deepest
tillage tool in order to make fair comparisons.

A growing database has accumulated reporting differences in SOC between CT and NT crop
management. Recently, efforts have been made to synthesize results from long-term studies on
SOC within regions (Paustian et al., 1998). However, efforts to isolate particular regions of North
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America with the greatest potential to store SOC with adoption of NT have only begun. Although
models have been developed to predict such regional differences in SOC accumulation potentiz_ﬂ
(Smith et al., 1998), long-term observational data could provide verification of such predict{ons .1f
enough cross-regional data were collected and synthesized. It was hypothesized that macroclimatic
conditions would have an influence on the potential of NT to sequester SOC compared with CT.
Objectives were to (1) summarize published data from the U.S. and Canada and (2) test whethf:r
soil type, cropping intensity, N fertilization, and macroclimatic regime affected the difference in
standing stock of soil organic C due to adoption of NT compared with CT.

MATERIALS AND METHODS

Data were obtained from the literature in which SOC was reported for NT crop management
compared with some form of CT (Table 7.1; Figure 7.1). Only reports that contained SOC infor-
mation on an area basis were used in order to avoid misleading interpretations due to management-
induced changes in bulk density (Ellert and Bettany, 1995). Differences in standing stock of SOC
between NT and CT were standardized to an annual basis. Net annualized change in SOC with
NT compared with CT was expected to decline with time, but this did not occur in the available
data from three locations (Figure 7.2). Length of time in all comparisons was 10.7 £ 6.1 years, with
85% of comparisons >5 years in length.

“Decomposition potential” of each location was evaluated using several different indices based
on climate. Long-term mean monthly precipitation and temperature data from the closest weather
station to each of the evaluated locations (i.e., within 30 km) were obtained (Global Historical
Climatology Network, 1999). Monthly potential evapotranspiration (PET) was calculated from
long-term mean monthly temperatures and latitude using the Thornthwaite equation (Thornthwaite
et al., 1957).

Index 1 was calculated as the sum of each monthly precipitation-to-potential evapotranspiration ratio
divided by 12. Monthly precipitation exceeding PET was assigned a value of 1, because those
locations with subzero mean monthly temperature were calculated to have no PET using the
Thornthwaite equation.

Index 2 was calculated as mean annual precipitation divided by mean annual PET (derived from the
sum of monthly values). Index 2 was allowed to exceed 1.

Index 3 was calculated as the sum of products from temperature and precipitation coefficients on a
monthly basis divided by 12. The temperature coefficient was calculated from a nonlinear function
that assumed a doubling of microbial activity for every 10°C change in temperature [2((°C-30)/10)]
(Kucera and Kirkham, 1971), with 30°C assumed as an optimum (Figure 7.3a). None of the locations
had mean monthly temperatures exceeding 30°C. The mean monthly precipitation coefficient was
expressed as mean monthly precipitation (mm) divided by 100. It was assumed that 100 mm of
precipitation per month would be adequate for maximum decomposition at any temperature. Months
with precipitation exceeding 100 mm were assigned coefficients of 1 (Figure 7.3b).

Index 4 was calculated as the product of temperature and precipitation coefficients on an annual basis.
The mean annual precipitation coefficient was calculated as mean annual precipitation (mm) divided
by 1200. When annual precipitation exceeded 1200 mm, the precipitation coefficient was allowed
to exceed 1.

Index 5 was calculated as the sum of the most limiting monthly coefficient (i.e., lowest temperature
or precipitation coefficient for each month) divided by 12.

Index 6 was calculated as the most limiting annual temperature or precipitation coefficient.

Because of unequal representation of geographical regions, soil orders, soil textural classes,
and fertilization regimes, individual univariate analyses on the net annualized change in SOC with
NT compared with CT were conducted for each of these variables separately, using the general
linear model procedure (SAS Institute Inc., 1990). Polynomial regressions (i.e., linear plus quadratic
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Figure 7.1  Geographical location of studies evaluated.
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Figure 7.2 Net annualized change in soil organic C with no tilage compared with conventional tillage as
affected by number of years under investigation. Data were compiled from Blevins et al. (1977),
Mielke et al. (1986), Beare et al. (1994), Ismail et al. (1994), and Hendrix et al. (1998). Dotted
lines are for individual locations, while solid line represents the mean of all observations.

functions using the general linear model procedure) were used to test the significance of continuous
variables, including cropping intensity, temperature, precipitation, and PET. Cropping intensity was
numerically expressed as the fraction of year in cropping, in which the year was divided into two
halves of winter and summer cropping. For testing of univariate climatic effects (i.e., indices 1 to 6
composed of temperature, precipitation, and PET variables), mean net annualized change in SOC
for each location was computed across cropping systems and N fertilization regimes,
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Figure 7.3 Diagrammatic representation of monthly temperature (a) and precipitation (b) coefficients used to
characterize decomposition potential of locations in indices 3 and 5.

RESULTS AND DISCUSSION
General

A total of 111 comparisons between NT and CT on SOC were available from 39 locations with
a wide range of temperature and precipitation coefficients (Figure 7.4). Temperature coefficients
for indices 3 and 4 were highly related to latitude (Figure 7.4c), while precipitation coefficients
were closely related to longitude (Figure 7.4b). Unfortunately, locations were not uniformly dis-
tributed among these gradients in order to avoid completely the confounding effects of temperature
and precipitation. Locations tended to have higher precipitation at lower than at higher latitudes
(Figure 7.4a) and higher temperatures at intermediate than at extreme longitudes (Figure 7.4d). To
obtain a better distribution of environments in the U.S. and Canada, data from long-term studies
are needed, especially from locations west of the Rocky Mountains, in southeastern U.S., and in
central Canada.

Without regard to other variables, the net annualized change in SOC with NT compared with
CT was normally distributed with a mean of 0.030 kg - m2 - yr! (P<0.001 of mean = 0) (Figure 7.5).
The mode and median of observations were 0.027 and 0.025 kg SOC - m™ - yr!, respectively. The
change in SOC with NT compared with CT was between 0.005 and 0.066 kg - m™ - yr! for 50%
of the observations.

Soil Type

Net annualized change in SOC with NT compared with CT was little affected by soil order
(Figure 7.6). Based on a least significant difference comparison, the change in SOC was greater
(P =0.04) only in Inceptisols compared with Mollisols.

Net annualized change in SOC with NT compared with CT was little affected by soil textural
class (Figure 7.7). Based on a least significant difference comparison, the change in SOC was
greater (P = 0.05) only in silty clay loams compared with loams. Previous observations (Jenkinson,
1988; Amato and Ladd, 1992) and model predictions (Hassink and Whitmore, 1997) have suggested
greater potential to store organic C in soils with a greater quantity of fine particles.
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Figure 7.4  Distribution of precipitation (a) and temperature (c) coefficients along a latitudina! gradient and
precipitation (b) and temperature (d) coefficients along a longitudinal gradient.

Nitrogen Fertilization

Net annualized change in SOC with NT compared with CT was unaffected by fertilizer
application level. However, SOC under CT averaged 0.026 kg - m= - yr-! greater (P = 0.07) under
fertilized (102 85 kg N-ha™' - yr') than unfertilized cropping. Under NT, SOC averaged
0.027 kg - m? - yr! greater (P =0.02) when crops were fertilized rather than unfertilized in 15
comparisons. The additional C stored with fertilization averaged ~2.5 kg - kg™' fertilizer-N applied,
which is greater than the C cost of manufacturing, distributing, and applying commercial N fertilizer,
estimated at 1.23 kg - kg~ (Izaurralde et al., 1998).

Cropping Intensity

Net annualized change in SOC with NT compared with CT increased (P<0.001) with increasing
cropping intensity (Figure 7.8). For example, under wheat-fallow (cropping intensity of 0.25), SOC
was an average of 0.026 kg - m2 - yr~' less under NT than under CT. Under continuous sorghum,
wheat, or comn (cropping intensity of 0.5), SOC was an average of 0.038 kg - m2- yr greater
under NT than under CT. Under double cropping (cropping intensity of 1.0), SOC was an average
of 0.062 kg - m™ - yr! greater under NT than under CT. More C input, and less water available to
soil microorganisms by crops extracting more water with increasing cropping intensity, would likely
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Figure 7.5 Frequency distribution of the net annualized change in soil organic C with no tillage compared with
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Figure 7.6 Mean and standard deviation of the net annualized change in soil organic C with no tillage compared

with conventionat tillage as affected by soil order. The number beside the mean is the number of
observations.

leave more plant-derived C at the soil surface under conditions less ideal for decomposition than
if incorporated. Increasing cropping intensity would utilize available water in winter—spring more
effectively to provide more C input.

Climate Indices

Since locations varied in fertilizer rate, cropping intensity, and length of time under investigation
of NT compared with CT, a mean difference in SOC storage between tillage regimes across these
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variables for each location was computed (n = 39). Data were also sorted by rank of each climate
index and then a mean computed for each group of three locations to reduce some of the large
variation in net annualized change in SOC among locations.

Index 1 (i.e., mean monthly precipitation-to-potential evapotranspiration ratio) was poorly
related to net annualized change in SOC with NT compared with CT (Figure 7.9a). Index 1 values

0.3

mZyr”)

18
17 35

-

11

0.0 T3 1 Y

Change in soil organic C
with no tillage compared with

conventional tillage (kg-m
S
L
[
{
(4]
1

fSL SL SCL L CL siL sicL C
Soil Textural Class

Figure 7.7 Mean and standard deviation of the net annualized change in soil organic C with no tillage compared
with conventional tillage as affected by soil textural class. The number beside the mean is the
number of observations. (Note: fSL is fine sandy loam, SL is sandy loam, SCL is sandy clay loam,
L is loam, CL is clay loam, SiL is silt loam, SiCL is silty clay loam, and C is clay.)
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Figure 7.8 Net annualized change in soil organic C with no tillage compared with conventional tillage as
affected by cropping intensity.
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differed little, partly because precipitation exceeded potential evapotranspiration during winter
months at most locations. Across all locations, index | values were assigned a value of 1 during
59 + 13% of the months. Index 2 (i.e., mean annual precipitation-to-potential evapotranspiration
ratio) indicated that maximum potential SOC storage with NT occurred at a ratio of 1.27 mm - mm™
(Figure 7.9b). No benefit of NT on potential SOC storage would be expected at an index 2 level
<0.75 mm - mm™', probably because low precipitation limits the potential of plants to fix C or limits
decomposition under both tillage regimes, even when crop residues are mixed with soil using CT.
At index 2 levels exceeding 1.75 mm - mm, there was also little potential SOC storage with NT.
Abundant precipitation would reduce potential SOC storage with NT because surface-placed res-
idues would be moist more frequently or for a longer period of time, leading to rapid decomposition
of residues under NT, similar to that under CT.

Indices 3 and 4 (i.e., combined temperature and precipitation coefficients on a monthly and
annual basis, respectively) also indicated climatic controls on potential SOC storage with NT
(Figure 7.10). Drier and colder locations had poor potential to store additional C with NT compared
with CT, whereas mild locations (i.e., neither dry and cold nor wet and hot) had the greatest
potential. Interestingly, indices 4 and 2 (i.e., on an annual basis) were better related to the change
in SOC with NT compared with CT than were indices 3 and 1 (i.e., on a monthly basis). This
indicates that these simple annualized climatic descriptions of locations could more effectively
predict potential SOC storage with NT than seasonal descriptions. However, large variation in
potential SOC storage occurred among the three locations used to obtain means, suggesting that
much more work is needed to elucidate the intricacies of soil organic matter dynamics as affected
by management and climate.

Indices 5 and 6 (i.e., most limiting temperature or precipitation coefficient on a monthly and
annual basis, respectively) produced climatic responses similar to other indices (Figure 7.11). Most
locations had monthly limitations due to temperature, although 28% had at least one month with
a precipitation limitation. As an example, Akron, CO, was limited by precipitation rather than by
temperature during 7 months. On an annual basis, only Corpus Christi, TX, had a precipitation
limitation rather than a temperature limitation.
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Figure 7.9 Net annualized change in soil organic C with no tillage compared with conventional tillage as
affected by precipitation-to-potential evapotranspiration ratio on a mean monthly (a) and a
mean annual (b) basis. Points represent the means of 3 consecutively ranked locations.
Regression equations are of the form: ASOC = b, + b, - (P/PET) + b, - (P/PET)2
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Figure 7.10 Net annualized change in soil organic C with no tiliage compared with conventional tillage as
affected by the product of temperature and precipitation coefficients on a mean monthly (a) and
a mean annual (b) basis. Points represent the means of 3 consecutively ranked locations.
Regression equations are of the form: ASOC = b, + by - (TxP) + b, - (T X P)2.
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Figure 7.11 Net annualized change in soil organic C with no tillage compared with conventional tillage as
affected by the most limiting climatic coefficient (i.e., temperature or precipitation) on a mean
monthly (a) and a mean annual (b) basis. Points represent the means of 3 consecutively ranked

locations. Regression equations are of the form: ASOC = b, + b, - (MLCC) + b, - (MLCC)2.
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Mean annual precipitation-to-potential evapotranspiration ratio (index 2; Figure 7.9b) and mean
monthly most limiting climatic coefficient (index 5; Figure 7.11a) were the best predictors of net
annualized change in SOC with NT compared with CT. To achieve 90% of maximum net annualized
change in SOC, regressions suggested that locations have (1) mean annual precipitation-to-potential
evapotranspiration ratios of 1.11 to .44 mm - mm-', (2) mean monthly most limiting climatic
coefficients of 0.19 to 0.31, or (3) mean annual temperature X precipitation coefficients of 0.32 to
0.42. Geographical locations in North America that meet these restrictions are in parts of Illinois,
Indiana, Ohio, and Kentucky (Figure 7.12). A wider area encompassing one or more of these
restrictions extends from the panhandle of Texas in the west to the coastal plain of Maryland in
the east and from the piedmont region of Georgia in the south to the prairie region of Minnesota
in the north (Figure 7.12). Much lower potential in SOC storage with NT compared with CT was
observed in more extreme environments, including the dry Great Plains region and the cold, humid
eastern provinces of Canada. However, more data are needed to validate and strengthen the
confidence of these relationships.

In a multivariate analysis, none of these climatic variables interacted significantly with cropping
intensity. Thus, in all regions the most intensive cropping systems (i.e., greatest C input) would
produce the maximum potential SOC storage with NT compared with CT. On a practical level,
this might mean shifting from (1) wheat—fallow to a wheat-sorghum-millet opportunity cropping
in the central Great Plains, (2) continuous corn to a corn and wheat—soybean and vetch cover
cropping system in the Midwest, or (3) continuous cotton to a cotton and clover—sorghum and
wheat double cropping system in the southeastern U.S.

The analyses in this review of literature were restricted to the effect of NT compared with CT
on SOC storage only and do not imply that NT is an inappropriate technology for semiarid and
humid regions. NT offers many other important benefits, including reducing fossil fuel consumption
and labor inputs, reducing soil erosion and water runoff, increasing soil aggregation and water
infiltration, creating wildlife and soil biotic habitat, etc. These should be considered as incentives
for producers to adopt this conservation management system.

Figure 7.12 Geographical locations of maximum potential soil organic C storage with no tillage compared with
conventional tillage meeting each criterion of indices 2, 4, and 5 (inner striated loop) and meeting
any criterion of indices 2, 4, and 5 (outer loop).
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CONCLUSIONS

It can be concluded from an analysis of available data in the literature that potential SOC storage
with NT compared with CT was greatest (~0.050 kg - m™ - yr') in mesic, subhumid regions of
North America with mean annual precipitation-to-potential evapotranspiration ratios of 1.1 to
1.4 mm - mm~'. Much lower potential in SOC storage with NT compared with CT was observed
in more extreme environments, including the dry Great Plains region and the cold, humid eastern
provinces of Canada. However, more data are needed to validate and strengthen confidence in these
relationships.

Soil order and soil textural class had little effect on potential SOC storage with NT. Interaction
of tillage regime with other management variables on potential SOC storage occurred with cropping
intensity, but not with level of fertilization. Potential SOC storage with NT compared with CT
increased when cropping intensity increased, regardless of climatic conditions. Published data from
North America were summarized so that policies to encourage or discourage land use for enhancing
SOC storage could be developed on an objective basis.
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